Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(11): e0289158, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033031

RESUMEN

Persistent cellular stress induced perpetuation and uncontrolled amplification of inflammatory response results in a shift from tissue repair toward collateral damage, significant alterations of tissue functions, and derangements of homeostasis which in turn can lead to a large number of acute and chronic pathological conditions, such as chronic heart failure, atherosclerosis, myocardial infarction, neurodegenerative diseases, diabetes, rheumatoid arthritis, and cancer. Keeping the vital role of balanced inflammation in maintaining tissue integrity in mind, the way to combating inflammatory diseases may be through identification and characterization of mediators of inflammation that can be targeted without hampering normal body function. Pirin (PIR) is a non-heme iron containing protein having two different conformations depending on the oxidation state of the iron. Through exploration of the Pirin interactome and using molecular docking approaches, we identified that the Fe2+-bound Pirin directly interacts with BCL3, NFKBIA, NFIX and SMAD9 with more resemblance to the native binding pose and higher affinity than the Fe3+-bound form. In addition, Pirin appears to have a function in the regulation of inflammation, the transition between the canonical and non-canonical NF-κB pathways, and the remodeling of the actin cytoskeleton. Moreover, Pirin signaling appears to have a critical role in tumor invasion and metastasis, as well as metabolic and neuro-pathological complications. There are regulatory variants in PIR that can influence expression of not only PIR but also other genes, including VEGFD and ACE2. Disparity exists between South Asian and European populations in the frequencies of variant alleles at some of these regulatory loci that may lead to differential occurrence of Pirin-mediated pathogenic conditions.


Asunto(s)
Proteínas Portadoras , Proteínas Nucleares , Humanos , Proteínas Nucleares/genética , Simulación del Acoplamiento Molecular , Proteínas Portadoras/metabolismo , Oxidación-Reducción , Hierro/metabolismo , Inflamación
2.
Bull Natl Res Cent ; 46(1): 225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967515

RESUMEN

Background: Pirin, a member of the cupin superfamily, is an iron-binding non-heme protein. It acts as a coregulator of several transcription factors, especially the members of NFκB transcription factor family. Based on the redox state of its iron cofactor, it can assume two different conformations and thereby act as a redox sensor inside the nucleus. Previous studies suggested that pirin may be associated with cancer, inflammatory diseases as well as COVID-19 severities. Hence, it is important to explore the pathogenicity of its missense variants. In this study, we used a number of in silico tools to investigate the effects of missense variants of pirin on its structure, stability, metal cofactor binding affinity and interactions with partner proteins. In addition, we used protein dynamics simulation to elucidate the effects of selected variants on its dynamics. Furthermore, we calculated the frequencies of haplotypes containing pirin missense variants across five major super-populations (African, Admixed American, East Asian, European and South Asian). Results: Among a total of 153 missense variants of pirin, 45 were uniformly predicted to be pathogenic. Of these, seven variants can be considered for further experimental studies. Variants R59P and L116P were predicted to significantly destabilize and damage pirin structure, substantially reduce its affinity to its binding partners and alter pirin residue fluctuation profile via changing the flexibility of several key residues. Additionally, variants R59Q, F78V, G98D, V151D and L220P were found to impact pirin structure and function in multiple ways. As no haplotype was identified to be harboring more than one missense variant, further interrogation of the individual effects of these seven missense variants is highly recommended. Conclusions: Pirin is involved in the transcriptional regulation of several genes and can play an important role in inflammatory responses. The variants predicted to be pathogenic in this study may thus contribute to a better understanding of the underlying molecular mechanisms of various inflammatory diseases. Future studies should be focused on clarifying if any of these variants can be used as disease biomarkers. Supplementary Information: The online version contains supplementary material available at 10.1186/s42269-022-00917-7.

3.
J Genet Eng Biotechnol ; 20(1): 119, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35951140

RESUMEN

BACKGROUND: Arthrogryposis is a medical term used to describe congenital contractures which often affect multiple limbs. Distal arthrogryposis (DA) is one of the major categories of arthrogryposis that primarily affects the distal parts of the body, i.e., the hands and the legs. Although ten different types and several subtypes of DAs have been described, the genes associated with each of these DAs are yet to be characterized. Distal arthrogryposis type 10 (DA10) is a rare genetic disease, which is distinguished from the other arthrogryposis types by plantar flexion contractures resulting in toe-walking during infancy as well as variability in contractures of the hip, hamstring, elbow, wrist and finger joints with no ocular or neurological abnormalities. Symptoms of DA10 indicate impairment specifically in the musculoskeletal system. DA10 is still poorly studied. AIM: The objective of this study was to identify the candidate gene for DA10 by scrutinizing the protein-protein interaction (PPI) networks using in silico tools. RESULTS: Among the genes that reside within the previously reported genomic coordinates (human chromosome assembly 38 or GRCh38 coordinates 2:179,700,000-188,500,000) of the causative agent of DA10, only TTN (the gene that codes for the protein Titin or TTN) follows the expression pattern similar to the other known DA associated genes and its expression is predominant in the skeletal and heart muscles. Titin also participates in biological pathways and processes relevant to arthrogryposes. TTN-related known skeletal muscle disorders follow the autosomal-dominant pattern of inheritance, which is a common characteristic of distal arthrogryposes as well. CONCLUSION: Based on the findings of the analyses and their correlation with previous reports, TTN appears to be the candidate gene for DA10. Our attempt to discover a potential candidate gene may eventually lead to an understanding of disease mechanism and possible treatment strategies, as well as demonstrate the suitability of PPI in the search for candidate genes.

4.
J Genet Eng Biotechnol ; 20(1): 7, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35006391

RESUMEN

BACKGROUND: Tumor necrosis factor alpha (TNFA) is an important cytokine that influences multiple biological processes. It is one of the key mediators of acute and chronic systemic inflammatory reactions and plays a central role in several autoimmune diseases. A number of approved monoclonal antibodies (mAbs) are widely used to subside these autoimmune diseases. However, there is a high rate of non-responsiveness to treatments with these mAbs. Therefore, it is important to be able to predict responses of the patients in an individualistic manner to these therapeutic antibodies before administration. In the present study, we used in silico tools to explore the effects of missense variants in the respective epitopes of four therapeutic anti-TNFA mAbs-adalimumab (ADA), certolizumab pegol (CZP), golimumab (GLM), and infliximab (IFX)-on their interactions with TNFA. RESULTS: The binding affinities of CZP and ADA to corresponding epitopes appear to be reduced by four (TNFAR131Q, TNFAE135G, TNFAR138Q, and TNFAR138W) and two (TNFAG66C and TNFAG66S) variants, respectively. The binding of GLM and IFX appears to be affected by TNFAR141S and TNFAR138W, respectively. TNFAG66C and TNFAG66S may be associated with autoimmune diseases, whereas TNFAE135G, TNFAR138W, and TNFAR141S may be pathogenic per se. CONCLUSION: These variants may contribute to the observed inter-individual variability in response to anti-TNFA mAbs treatments and be used as markers to predict responses, and thus optimize therapeutic benefits to the patients.

5.
Toxicol Rep ; 8: 1109-1120, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34141598

RESUMEN

Various anthropogenic and natural events over the years have gradually increased human exposure to various heavy metals. Several of these heavy metals including cadmium, mercury, nickel, chromium, and the metalloid arsenic among others, have created major public health concerns for their high level of toxicities. Identification of the general as well as the differentially affected cellular metabolic pathways will help understanding the molecular mechanism of different heavy metal-induced toxicities. In this study, we analyzed 25 paired (control vs. treated) transcriptomic datasets derived following treatment of various human cells with different heavy metals and metalloid (arsenic, cadmium, chromium, iron, mercury, nickel and vanadium) to identify the affected metabolic pathways. The effects of these metals on metabolic pathways depend not only on the metals per se, but also on the nature of the treated cells. Tissue of origin, therefore, must be considered while assessing the effects of any particular heavy metal or metalloid. Among the metals and metalloid, arsenic appears to have relatively more pleiotropic influences on cellular metabolic pathways including those known to have association with diabetes. Although only two stem cell derived datasets are included in the current study, effects of heavy metals on these cells appear to be different from other mature cells of similar tissue origin. This study provides useful information about different heavy metal affected pathways, which may be useful in further exploration using wet-lab based techniques.

6.
Infect Genet Evol ; 92: 104888, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33933634

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) mediated Coronavirus disease-19 (COVID-19) has affected millions of individuals around all corners of the globe. Symptoms and severities of infection with this highly contagious virus vary among individuals and there is disparity in the number of COVID-19-related casualties across different ethnic groups. The primary receptor for SARS-CoV-2 entry into the host cells is angiotensin-converting enzyme 2 (ACE2). Certain variants of ACE2 are known to be associated with COVID-19 comorbidities such as hypertension, cardiovascular complications, diabetes, chronic lung disease, etc. In this study, we looked into the geographic distribution of disease-associated variants of ACE2 as well as closely located PIR gene to explore any possible correlation with the disparities in COVID-19 severities and casualties across ethnic groups. Frequencies of the ACE2 variants associated with COVID-19 comorbidities are higher in the European and the admixed American populations. These variants are also present with stronger pairwise linkage disequilibrium (LD) in the European and the admixed American populations. On the other hand, the variants with protective role are more prevalent in the East and the South Asian populations. Strong pairwise LD exists among the activity modifying (modifier) variants of the PIR and ACE2 genes only in the European super-population. Absence of these PIR variants in the South Asian population may contribute to the overall lower COVID-19 case fatality rates (CFR) despite the dense population in this region.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/etnología , COVID-19/genética , Dioxigenasas/genética , SARS-CoV-2 , Alelos , COVID-19/epidemiología , Predisposición Genética a la Enfermedad , Variación Genética , Salud Global , Haplotipos , Humanos , Índice de Severidad de la Enfermedad
7.
Biochem Biophys Rep ; 26: 100982, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33817352

RESUMEN

Respiratory transmission is the primary route of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Angiotensin I converting enzyme 2 (ACE2) is the known receptor of SARS-CoV-2 surface spike glycoprotein for entry into human cells. A recent study reported absent to low expression of ACE2 in a variety of human lung epithelial cell samples. Three bioprojects (PRJEB4337, PRJNA270632 and PRJNA280600) invariably found abundant expression of ACE1 (a homolog of ACE2 and also known as ACE) in human lungs compared to very low expression of ACE2. In fact, ACE1 has a wider and more abundant tissue distribution compared to ACE2. Although it is not obvious from the primary sequence alignment of ACE1 and ACE2, comparison of X-ray crystallographic structures show striking similarities in the regions of the peptidase domains (PD) of these proteins, which is known (for ACE2) to interact with the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Critical amino acids in ACE2 that mediate interaction with the viral spike protein are present and organized in the same order in the PD of ACE1. In silico analysis predicts comparable interaction of SARS-CoV-2 spike protein with ACE1 and ACE2. In addition, this study predicts from a list of 1263 already approved drugs that may interact with ACE2 and/or ACE1 and potentially interfere with the entry of SARS-CoV-2 inside the host cells.

8.
Sci Rep ; 11(1): 7504, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33820928

RESUMEN

Diabetes mellitus is a complex and heterogeneous metabolic disorder which is often pre- or post-existent with complications such as cardiovascular disease, hypertension, inflammation, chronic kidney disease, diabetic retino- and nephropathies. However, the frequencies of these co-morbidities vary among individuals and across populations. It is, therefore, not unlikely that certain genetic variants might commonly contribute to these conditions. Here, we identified four single nucleotide polymorphisms (rs5186, rs1800795, rs1799983 and rs1800629 in AGTR1, IL6, NOS3 and TNFA genes, respectively) to be commonly associated with each of these conditions. We explored their possible interplay in diabetes and associated complications. The variant allele and haplotype frequencies at these polymorphic loci vary among different super-populations (African, European, admixed Americans, South and East Asians). The variant alleles are particularly highly prevalent in different European and admixed American populations. Differential distribution of these variants in different ethnic groups suggests that certain drugs might be more effective in selective populations rather than all. Therefore, population specific genetic architectures should be considered before considering a drug for these conditions.


Asunto(s)
Complicaciones de la Diabetes/genética , Diabetes Mellitus/genética , Etnicidad/genética , Variación Genética , Alelos , Complicaciones de la Diabetes/tratamiento farmacológico , Diabetes Mellitus/tratamiento farmacológico , Aprobación de Drogas , Estudios de Asociación Genética , Haplotipos/genética , Humanos , Polimorfismo de Nucleótido Simple/genética , Mapas de Interacción de Proteínas/genética
9.
Metabol Open ; 8: 100072, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33336183

RESUMEN

Gut microbes play a crucial role in the maintenance of human health. Components in the diet of the host affect their metabolism and diversity. Here, we investigated the influences of three commonly used non-caloric artificial sweeteners-aspartame, acesulfame K and sucralose-on the growth and metabolism of an omnipresent gut microbe Escherichia coli K-12. Methods: Growth of E. coli in the presence of aspartame, acesulfame K and sucralose in media was assessed and the influences of these artificial sweeteners on metabolism were investigated by relative expression analysis of genes encoding the rate limiting steps of important metabolic pathways as well as their global metabolomic profiles. Results: As a whole, E. coli growth was inhibited by aspartame and induced by acesulfame potassium, while the effect of sucralose on growth was less prominent. Although the expressions of multiple key enzymes that regulate important metabolic pathways were significantly altered by all three sweeteners, acesulfame K caused the most notable changes in this regard. In multivariate analysis with the metabolite profiles, the sucralose-treated cells clustered the closest to the untreated cells, while the acesulfame potassium treated cells were the most distant. These sweeteners affect multiple metabolic pathways in E. coli, which include propanoate, phosphonate, phosphinate and fatty acid metabolism, pentose phosphate pathway, and biosynthesis of several amino acids including lysine and the aromatic amino acids. Similar to the gene expression pattern, acesulfame potassium treated E. coli showed the largest deviation in their metabolite profiles compared to the untreated cells.

10.
PLoS One ; 15(1): e0228000, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31971968

RESUMEN

Interethnic variability in drug response arises from genetic differences associated with drug metabolism, action and transport. These genetic variations can affect drug efficacy as well as cause adverse drug reactions (ADRs). We retrieved drug-response related single nucleotide polymorphism (SNP) associated data from databases and analyzed to elucidate population specific distribution of 159 drug-response related SNPs in twenty six populations belonging to five super-populations (African, Admixed Americans, East Asian, European and South Asian). Significant interpopulation differences exist in the minor (variant) allele frequencies (MAFs), linkage disequilibrium (LD) and haplotype distributions among these populations. 65 of the drug-response related alleles, which are considered as minor (variant) in global population, are present as the major alleles (frequency ≥0.5) in at least one or more populations. Populations that belong to the same super-population have similar distribution pattern for majority of the variant alleles. These drug response related variant allele frequencies and their pairwise LD measure (r2) can clearly distinguish the populations in a way that correspond to the known evolutionary history of human and current geographic distributions, while D' cannot. The data presented here may aid in identifying drugs that are more appropriate and/or require pharmacogenetic testing in these populations. Our findings emphasize on the importance of distinct, ethnicity-specific clinical guidelines, especially for the African populations, to avoid ADRs and ensure effective drug treatment.


Asunto(s)
Heterogeneidad Genética , Genética de Población , Preparaciones Farmacéuticas/metabolismo , Filogenia , Polimorfismo de Nucleótido Simple/genética , Alelos , Análisis por Conglomerados , Frecuencia de los Genes/genética , Geografía , Haplotipos/genética , Humanos , Desequilibrio de Ligamiento/genética , Análisis Multivariante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...